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Abstract. A consistent quantum formalism based on the localized basis of the Wannier functions
in the Heisenberg and Schrödinger pictures to describe propagation of an electromagnetic field in a
three-dimensional media including diffraction is presented. In the Schrödinger picture the Fokker–
Planck equation for the Glauber–Sudarshan quasi-probability and the corresponding Langevin
equations are given. As a result the spacetime description is obtained by a simple change of
variables in the temporal master equation of the field. Using this formalism it is shown that the
existence of integrals of motion in the propagation of light in a medium under the condition of
non-degenerated parametric and two-photon interactions results in amplification of modes when
non-classical properties of the light are conserved. Quantum propagation of light in a linear medium
taking into account the diffraction is considered and its solution is found.

1. Introduction

When considering the statistics of light the usual approaches are based on the temporal evolution
of the electromagnetic field. It is natural for problems when the spatial behaviour can be
neglected, such as for the high-Q optical cavity scheme for which the temporal features are
important. In contrast, the spatial behaviour plays the key role in propagation of light through
media or a distributed system that cannot be considered as a point. In these systems new states of
a light called spatially squeezed states arise [1]. The quantum formalism for distributed systems
has been developed in a number of works. One-dimensional approaches were presented in
[2]. A theory for continuous variables in the Heisenberg picture was given in [3], where the
continual coherent states and squeezed states of the field have been introduced and a theory
of light detection in free space was presented. Using these approaches, evolution of the light
statistics has been examined for the three- [4] and four-photon [5] parametric interaction in
transparent media. Multi-photon processes were discussed in [6].

In this paper we present a quantum formalism, which enables us to consider the propagation
of light in a three-dimensional medium with diffraction being taken into account. It is based on
a localized basis of the Wannier functions, and allows the conversion of the temporal description
to a spacetime description by a simple change of variables. Indeed, it is the method used in
solid-state physics for the transition from collective to local variables [7]. The main feature of
the local description in the Wannier basis is that the problem turns out to be multi-particle when
the local field oscillators interact among themselves even in free space. From the physical point
of view this is a transfer of excitation or the light propagation process. On the other hand,
the interaction of local oscillators produces the coupled equations, which as we show have
the form of the transfer equations. Our approach is formulated in both the Heisenberg and
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Schrödinger pictures where the Fokker–Planck equations for the field quasi-probability are
derived together with the corresponding Langevin equations.

To describe the interaction of light with atoms, the adiabatic illumination of fast atomic
variables is often used to obtained a closed equation for the field or master equation [8, 9] that
is a starting point for analysing the statistics of the light. The simple recipe of how to obtain
the local description allows us to obtain the transfer equation immediately from the temporal
master equation by missing all steps of the derivation procedure.

The potential of the presented formalism is illustrated using two problems. In the first
problem the statistics of the light are considered for propagation in a one-dimensional medium
with two-photon and parametric interaction. Here within the framework of a local description
an interesting peculiarity due to the integrals of motion arises. The existence of the integrals
makes it possible to establish the main features of the statistics transformation immediately
without going into the solution of the dynamic problem [10]. It has been shown in this way
that enhancement of light and the conservation of non-classical properties can be possible. In
the second problem the propagation of the light in a linear three-dimensional medium with
diffraction is considered and solutions have been found.

2. Wannier basis. Local operators

In one-dimensional normalization space L plane waves ϕk(x) = (1/
√
L) exp(ikx), where

	k = 2π/L, form a complete orthonormal basis. It is used for a standard representation of the
electromagnetic field strength operator, where the operators of photon creation and annihilation
a

†
k , ak arise with commutational relations

[ak, a
†
k′ ] = δkk′ . (2.1)

The operators a†
k , ak describe the creation and annihilation of photons of a wavevector k over

the whole space L. These operators may be called collective, because they are responsible
for the excitation of the whole volume. For the local description of the electromagnetic field
instead of plane waves we use Wannier functions known in solid-state physics [7], which are
packets of plane waves

wm(x − l) = 1√
N

∑
k∼m

exp(−ikl) ϕk(x) (2.2)

the wavevectors k ∼ m lie in a band m − π/a � k < m + π/a. Here each band m, or zone,
corresponds to the partition of one-dimensional space L into N = L/a cells, with positions
determined as l = na. In k-space the centres of so-defined bands are separated by an interval
	m = 2π/a. The terms in (2.2) form a geometrical progression, so summation is possible.
Then it easily verified that for large N the Wannier functions are localized in a cell with a
coordinate l in the region ∼ a. The Wannier functions defined in accordance with (2.2) form
the complete orthonormal set∑

ml

wm(x − l) w∗m(x ′ − l) = δ(x − x ′) (2.3)

(wm(x − l), w∗m′(x − l′)) = δmm′δll′ (2.4)

where the scalar product is defined by the integration over the whole space L.
The Wannier basis serves as a framework for the introduction of local operators of creation

and annihilation a†
ml, am(l):∑

k

ϕk(x)ak =
∑
ml

am(l) wm(x − l). (2.5)
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From (2.5) it follows that the operators are coupled by a unitary transformation

am(l) =
∑
k

C∗mk(l) ak (2.6)

ak =
∑
ml

Cmk(l) am(l) (2.7)

where

Cmk(l) = 1√
N

∑
k′∼m

exp(−ik′l) δk′k. (2.8)

For local operators the following commutational relations are valid:

[am(l), a
†
m′(l
′)] = δmm′δll′ . (2.9)

Relations (2.5) allow us to interpret them as operators of creation and annihilation of a photon
at a point l in the vicinity ∼ a. As a result local field oscillators described by the introduced
operators are defined in the space L. From here on we will refer to the packets of plane waves
forming the local operators as local modes with wavenumber m and with a width 	νm = c/a.
Strictly speaking these packets are not modes, because there is no physical reason for them to
be distinguishable, however, the term seems to be convenient.

Equation (2.5) is a starting point in the formalism of quantum transfer theory, which may be
formulated in different pictures. From the operational point of view the unitary transformations
(2.6) and (2.7) following from (2.5) mean that the transition from the non-local to the local
description and vice versa is accomplished by a change of variables.

The specific feature of the local description is its many-particle character, where the local
oscillators are already interacting in the free space. This interaction describes the excitation
transfer or light propagation process, which determines the structure of the equations of motion,
where chains of BBGKI type (Bogolyubov, Born, Green, Kirkwood, Ivon) arise, resulting
finally in the propagation equations.

Consider the case of free space, for which the field evolution is defined only by a
Hamiltonian H0 =

∑
k h̄ωka

†
kak , ωk = ck. Let the operator ak in (2.5) be defined in the

Heisenberg representation, i.e. satisfying the equation ∂ak/∂t = ih̄−1[H0, ak]. To find the
equation for the local Heisenberg operator

am(l, t) = 1√
N

∑
k∼m

ak(t) exp(ikl) (2.10)

let us differentiate with respect to time. Assuming the size of the space cella to be small, a � L,
and a→ 0, l may be considered as a continuous space coordinate. In this approximation

k exp(ikl) = −i
∂

∂l
exp(ikl) (2.11)

as a result it follows that the transfer equation for the local operator is(
∂

∂t
+ c

∂

∂l

)
am(l, t) = 0. (2.12)

This equation is valid over a coarse space scale with a characteristic size a providing the
fulfilment of (2.11), in this case the replacement δll′ → aδ(l − l′) is possible.
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For a many-particle problem (2.12) may be represented as a set of coupled equations due
to the interaction of local operators. The Hamiltonian H0 appears to be non-diagonal with
respect to the indices ll′. The equation of motion takes the form

∂

∂t
am(l) = ih̄−1[H0; am(l)] = −i

∑
l′
�m(l, l

′) am(l′) (2.13)

the coupling constant

�m(l, l
′) = c

N

∑
k∼m

k exp(ik(l − l′)) (2.14)

links the oscillator at the point l with all of its neighbours. However, due to its δ-shape, the
coupling appears to be significant only for two adjacent oscillators. In other words, in free
space the interaction between local oscillators is described on a coarse scale by a derivative
with respect to l:

∂

∂l
am(l) = i

c

∑
l′
�m(l, l

′) am(l′). (2.15)

Equation (2.15) is obtained by differentiation of (2.10) with respect to l, taking (2.11) into
account. Consider the commutator of local operators for different times. For the free evolution,
when the dynamics of operators is determined by the Hamiltonian H0

[am(l, t); a†
m′(l, t + τ)] = δmm′ exp(icmτ)

1

	νm
δa(τ ) (2.16)

the function (2.17)

δa(τ ) = 	νm

N

sin(πτ	νm)

sin(πτ	νmN−1)
(2.17)

N 
 1 has a sharp maximum for τ → 0. Its weight is concentrated in the vicinity of the
order of a/c = 	ν−1

m , so it may be considered as a delta-function when 	t � a/c. Note that
δa(0) = 	νm. The occurrence of the temporal scale delta-function is connected with the use
of a coarse space scale with characteristic size a, where the time interval will be 	t � a/c.

Let us introduce the interaction picture. Consider the slowly changing part or envelope of
the local operator am(l):

am(l, t) = Am(l, t) exp(−iωmt + iml) (2.18)

where ωm = cm. Then the unitary transformations in (2.6) and (2.7) will take the form

Am(l, t) = 1√
N

∑
k∼m

ak(t) exp{−i(ωk − ωm)t + i(k −m)l} (2.19)

ak(t) = 1√
N

∑
l

Am(l, t) exp{i(ωk − ωm)t − i(k −m)l} (2.20)

the evolution of the operators ak andAm(l, t) is defined only by the Hamiltonian of interaction
V ,

∂

∂t
ak(t) = ih̄−1[V (t), ak(t)] (2.21)(
∂

∂t
+ c

∂

∂l

)
Am(l, t) = ih̄−1[V (t), Am(l, t)]. (2.22)
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3. Three-dimensional case. Quasi-optical approximation

Consider a normalized volumeL3 with a number of cellsN = N1N2N3,N1 = N2 = N3 = l/a,
where for simplicity the cell was chosen to be of cubic shape. Then in the initial formulae the
evident replacements will be k → k, m → m,l → l, x → r. For the local operator in the
interaction picture the following expression should be written instead of (2.19):

Am(l, t) = 1√
N

∑
k∼m

ak(t) exp(−i(ωk − ωm)t + (k −m)l) (3.1)

where the dispersion law has the form ωq = c
√
(q, q), q = k · m. Let us find the equation

of motion for local operators. Similarly to the one-dimensional case let us differentiate (3.1)
with respect to time. Assuming l to be a continuously changing variable, we will find instead
of (2.11)

√
(q, q) exp(iql) ≈

(
−i

∂

∂lz
− 1

2qz

(
∂2

∂l2x
+
∂2

∂l2y

))
exp(iql). (3.2)

When summing over k ∼m we replace kz → m ≈ mz. This approximation corresponds to a
quasi-plane wave of frequencyωm = cm, propagating along the z-axis. In as much as a coarse
spatial scale was introduced, for which vector l may be considered as a continuous function of
the coordinates, let us make a replacement l→ r(x, y, z). As a result the equation of motion
takes the form (

∂

∂t
+ c

∂

∂z
− i

c2

2ωm

(
∂2

∂x
+
∂2

∂y

))
Am(r) = −ih̄−1[V,Am(r)] (3.3)

where V is the Hamiltonian of the interaction. The equation following from (3.3) for the
free field (V = 0) is well known in the classical theory. It describes light propagation with
diffraction taken into account in a quasi-optical approximation.

In equation (3.3) the Hamiltonian V describing the electromagnetic field interactions with
the medium should be expressed in terms of local operators. As an example consider the
Hamiltonian of light interaction with atoms in the dipole approximation, which is often a basis
for a variety of problems. It has the form

V (t) = −i
∑
A,k

√
h̄ωk

2ε0L3
ak exp(−iωkt + ikrA)dA(t) + h.c. (3.4)

Equation (3.4) is given in the interaction picture, where dA is the operator of the dipole moment
for an atom located at a point rA. Changing to local operators with the aid of (2.20), where the
three-dimensionality should be taken into account, we will use the following approximations.
Let the packet or the local mode interact with the atom as a whole. It means that inside the
band 	νm all frequencies ωk ≈ ωm. Replace the atom position rA by the position of the cell
where this atom is located. Then the summation over the atoms may be divided into a sum
over the cells l containing atoms and a sum over the atoms inside the cell. Suppose dl is the
operator of the atomic dipole moment in the cell l, then equation (3.4) will take the form†

V (t) = −i
∑
ml

√
h̄ωm

2ε0a3
Am(l) exp(−iωmt + iml)dl + h.c. (3.5)

† Details of these and following calculations are given in [11].
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Here a new normalization volume a3 appears, while the summation is performed only over
the cells containing atoms. The Hamiltonian obtained describes the elementary interactions of
the local field oscillators or photons in cells l with atoms located inside. As a result changing
to local oscillators in the interaction Hamiltonian (3.4) reduces to an ordinary replacement:
ak → Am(l), k→m, r→ l.

In a number of cases effective interaction operators obtained, for example, by unitary
transformations of the starting Hamiltonian (3.4), are used for the description of multi-photon
processes. Given below are two effective interaction operators for two-photon and parametric
interactions in the presentation of local operators:

H2 =
∑

l

∑
1,2

f12Am1(l)Am2(l)Sl exp(i(ω21 − ωm1 − ωm2)t) + h.c. (3.6)

H3 =
∑

l

∑
1,2,3

G123(l)Am1(l)Am2(l)A
†
m3
(l) exp(−i(ωm1 + ωm2 − ωm3)t) + h.c. (3.7)

where f12, G123 = g123 exp(i(m1 + m2−m3)l) are the coupling constants. The Hamiltonian
H2 describes two-photon interaction of the modes having frequencies in the region of two-
photon resonance: ω21 ≈ ωk2 + ωk2 . The operator Sl = |2〉l〈1| corresponds to the transition
of atoms located at the point l from the lower to the upper working level. The process of
parametric interaction of three waves in a transparent medium conforms to the Hamiltonian
H3.

4. Integral of motion and the statistics of the light

The integrals of motion may appear in the problems of light propagation in a medium, for
which it is natural to use a local description. The existence of the integrals enables one
to examine some peculiarities of the light statistics transformation without going into the
solution of dynamic equations. Consider as an example two nonlinear processes: two-photon
and parametric interactions, which are described by the effective Hamiltonians (3.6) and (3.7).
Both processes are multimode, involving all pairs and triplets of modes having frequencies
related as

ωm1 + ωm2 = ω21 (4.1)

ωm1 + ωm2 = ωm3 . (4.2)

Hereafter we restrict ourselves to the case of a one-dimensional medium assuming the light to
be propagating along the z-axis.

The pairs of modes m1 and m2 connected by conditions (4.1) and (4.2) and (4.31) will be
referred to as conjugated. For them the difference of the photon number operators

I = n1(l)− n2(l) (4.3)

where nj = A†
mj
(l)Amj

(l), j = 1, 2 commutate with the Hamiltonian

[H2,3, I ] = 0. (4.4)

Consequently, I and any function of the form f (I) are integrals of motion. For a problem
with boundary conditions l will be considered as a continuous coordinate replacing l → z.
Introducing the new variables and assuming the light propagating along the z-axis: t ′ =
t − z/c, z′ = z. Then by virtue of (4.4) the difference of the number of photons in conjugated
modes is conserved for any point of the medium:

I (z, t) = I (0, t − z/c). (4.5)
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Figure 1.

With the use of the obtained operator integrals of motion it is possible to find the peculiarities
of the transformation of the mutual correlation of conjugated modes for the propagation in
a medium. Thus all statistical properties described by the correlation functions of different
intensity, e.g. of the form 〈(I (z, t))pI ((z, t + τ))q〉 = K(p,q)(z, τ ) are conserved by virtue of
(4.5). From the standpoint of the observation, the lowest-order correlation function and its
Fourier image is of more direct interest to us:

K(z,�) =
∫ ∞
−∞
〈I (z, t)I (z, τ )〉 exp(i�τ) dτ. (4.6)

It is possible to measure the function (4.6) in a scheme with two photodetectors (figure 1),
where the fluctuation spectrum of the difference photocurrent i2(�) is observed. For this
scheme

i2(�) = η〈n1 + n2〉 + η2KN(�). (4.7)

Here the first term which is independent of frequency is the shot noise. The index N

indicates normal ordering of the field operators to describe a detector that responds to the
absorption of a photon. The rate of registration η = q	νm, where q is the quantum efficiency
of the detectors, which for simplicity are assumed to be equal. The presence of the local mode
	νm = c/a in the expression for the photocurrent spectrum follows from the formulae for
detection given in the presentation of local operators. This may be elucidated as follows. A
wide-band photodetector is needed to describe the light detection. Therefore, to register the
local mode in front of the detector we have to place an optical filter of bandwidth 	νm. Then
	νm, determining the rate at which photons fall on the detector, is the bandwidth of the scheme.

Assuming that at the detector the local operators commute as free-field operators (2.16),
let us to write the correlation function (4.6) in the normal and time-ordered form K(�) =
KN(�) + 〈n1 + n2〉/	νm. Then taking into account the motion integral one finds

KN(z,�) +
1

	νm
〈n1 + n2〉 = KN(0, �) +

1

	νm
〈n10 + n20〉 (4.8)

where 〈n10〉 and 〈n20〉 are the input photon number. As a result the expression for the
photocurrent or noise spectrum (4.7) takes the form

i2(z,�) = 	νm〈n1 + n2〉q(1− q) + 	νm〈n10 + n20〉q(q − 1) + i2(0, �) (4.9)

where

i2(0, �) = 	νmq〈n10 + n20〉 + (	νmq)
2KN(0, �) (4.10)

is the input noise.
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It is seen from (4.9) that for an ideal photodetector (q = 1) the input and output noise
spectra of the light are equal. This means that the correlation of conjugated modes is conserved
during propagation in the medium. Suppose that the input state of the modes is non-classical,
so it is a quantum correlation for which the shot noise is suppressed in bandwidth 	νm by a
factor of 1− q:

i2(0,	�) = 	νmq〈n10 + n20〉(1− q). (4.11)

The state of the light resulting in (4.11) is produced, for example, by an optical parametric
amplifier (OPA). Then the level of shot-noise suppression in the output is unchanged:

i2(z,	�) = 	νmq〈n1 + n2〉(1− q). (4.12)

This means that the quantum properties of light in the medium are conserved. Moreover, in the
medium with two-photon or parametric interaction the conjugated modes may be amplified, in
that the observed initial correlation, in particular, the quantum correlation is conserved. This
specific feature determines the properties of spontaneous radiation. Thus, if the input is the
vacuum state, then i2(z,	�) = 0 at the output. This means that the conjugated modes arising
in spontaneous radiation have a non-classical correlation that results in a suppression of shot
noise. Indeed, all these properties follow from the existence of integrals of motion in systems
expanded in space.

5. Local quasi-probabilities

In previous items the Heisenberg picture was introduced for local operators. In the Schrödinger
picture the evolution is determined by the density matrix of the electromagnetic field ρ, which
may be connected to c-number functionsP({αk}, s) called s-ordered quasi-probabilities. They
arise in the density matrix expansion over operators 	({αk}, s), which are Fourier images of
s-ordered displacement operators forming the complete set:

	({αk}, s) = 1

π

∫
{d2βk}

∏
k

exp{s|βk|2 + (β∗k (αk − ak)− h.c.)} (5.1)

where {d2βk} =
∏

k d2βk . Then the s-ordered quasi-probability is determined by the
expression

P({αk}; s) = Sp (	({αk}, s)ρ). (5.2)

Using the replacements ak → am(l) in the above formulae we obtain the local quasi-
probability P({αm(l)}; s). In the following we will restrict ourselves to the case s = 1,
corresponding to the normal ordering of the field operators which is described by the Glauber–
Sudarshan quasi-probability P(s = 1) = P . This function arises in the density matrix
expansion over coherent states or the diagonal representation. From the given expressions it
is possible to obtain the relation between local and non-local quasi-probabilities. Similarly in
the case of operators, it is possible to proceed from one distribution function to another by the
change of variables:

P({αm(l)}) ←→ P({αk}) (5.3)

{αm(l)} ←→ {αk} (5.4)

where the variables are related by the expression of (2.6) and (2.7).
In the Schrödinger representation the peculiarities of the local description specified by the

many-particle character of the problem become apparent to the same extent as in the Heisenberg
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representation. Here the transfer equations occur, which are formally equivalent to the BBGKI
chains for the partial distribution functions. Out of all of the hierarchy of distribution functions
in the present case, the following two types of one-particle quasi-probabilities are of interest.
They arise from the function P({αm(l)}), of all modes of all local oscillators. Averaging over
all oscillators except for the chosen one we will find the distribution function P(α{m}(l)) for all
modes of one local oscillator located at a point l. The averaging of P(α{m}(l)) over all modes
except for one results in a function P(αm(l)) describing one mode of one local oscillator.

For a free evolution the introduced one-particle distribution functions P1 = P(α{m}(l)),
P(αm(l)) obey the following transfer equation:(

∂

∂t
+ c

∂

∂l

)
P1 = 0. (5.5)

In (5.5) the derivative over l describes the interaction of local oscillators or excitation transfer.
Similarly to (2.13) it may be presented in the form

c
∂

∂l
P (αm(l)) = −hm(l, l)P (αm(l))−

∑
l′ �=l

∫
d2αm(l

′) hm(l, l′)P (αm(l), αm(l′)) (5.6)

where hm(l, l′) = i�m(l, l
′)(∂/∂αm(l))αm(l′) + c.c. is the free evolution differential operator

with the Hamiltonian H0 ↔
∑

mll′ hm(l, l
′).

6. Fokker–Planck and Langevin equations

An approach based on the master equation for the quasi-probability P({αk}) in the Fokker–
Planck approximation is often used to describe the statistical properties of light. In the problem
of light interaction with atoms the master equation for the electromagnetic field can be obtained
by an adiabatic elimination of atomic variables. It is not necessary to derive the field equation
once again in terms of the local description, because one may immediately use the change of
variables (5.4).

As an example, consider the interaction of light with a two-level system in the lowest
approximation for which the processes of linear amplification or absorption occur. Such a
medium is described by a linear susceptibility, κ(ω) = |d|2(ω0 − ω − iγ )−1 where d and ω0

are the dipole moment and the frequency of the atomic transition, respectively, γ is the decay
rate or transverse relaxation. The form of the field equation obtained by adiabatic elimination
of the fast atomic variables is well known (see, [9]):

∂

∂t
P ({αk}) =

∑
k

(
A(k)

∂

∂αk
αk + Q(k)

∂2

∂αk∂α
∗
k

+ c.c.

)
P({αk}). (6.1)

Here the coefficients are defined by the linear susceptibility and populations of the upper N2

and lower N1 levels:

A(k) = εk(N1 −N2) Im κ(ωk)− iεk(N1 + N2)Re κ(ωk)

Q(k) = εkN2 Im κ(ωk)

εk = h̄−2(h̄ωk/2ε0L
3).

When changing the variables we will assume that the wavepacket forming the local mode
interacts as a whole. Then inside the band k ∼ m it is possible to neglect the dispersion of all
harmonics. This means that A(k) ≈ A(m), Q(k) ≈ Q(m). This approximation enables us to
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write at once the transfer equation for the one-particle quasi-probability, say P(α{m}(l)) = P1

in the form(
∂

∂t
+ c

∂

∂l

)
P1 =

∑
m

(
A(m)

∂

∂αm(l)
αm(l) + Q(m)

∂2

∂αm(l)∂α∗m(l)

)
P1 + c.c. (6.2)

Note that the structure of the differential operators on the right-hand site is the same in (6.2)
and (6.1), and the whole of the procedure of passing to the local description reduces to an
addition of a derivative over l to the left-hand side of the equation.

The equation for the quasi-probability (6.1) is in agreement with the following Langevin
equations:

∂

∂t
αk = −A(k)αk + fk

∂

∂t
α∗k = −A∗(k)α∗k + f †

k

(6.3)

where the correlator of random forces is defined by a diffusion coefficient

〈fk′(t)f †
k (t + τ)〉 = 2Q(k)δkk′δ(τ ). (6.4)

In as much as the Langevin variables here are associated with the diagonal representation,
they correspond to the normally ordered averages of the field operators 〈a†

k (t) ak(t + τ)〉 =
〈α∗k (t) αk(t + τ)〉.

In the local description, the main task in the formulation of the Langevin equations is
in finding the random force correlator. To this end we use a change of variables of the form
(2.19) and (2.20), where Am(l)→ αm(l), ak → αk , thereby we introduce the local Langevin
variable αm(l). Then the approximation A(k) ≈ A(m), Q(k) ≈ Q(m) used in writing down
the equation for local quasi-probability leads to the Langevin equations(

∂

∂t
+ c

∂

∂l

)
αm(l, t) = −A(m) αm(l, t) + fm(l)(

∂

∂t
+ c

∂

∂l

)
α∗m(l, t) = −A∗(m) α∗m(l, t) + f †

m(l).

(6.5)

For the variables there follows an expression for a random source:

fm(l, t) = 1√
N

∑
k∼m

fk exp(−i(ωk − ωm)t + i(k −m)l). (6.6)

From this we will find that the correlator of random sources, as well as in (6.4), is defined by
the diffusion coefficient

〈fm′(l′, t)f †
m(l, t + τ)〉 = 2Q(m)δmm′δll′δ(τ ). (6.7)

As to (6.7), it should be noted that during the transition to a local description with a coarse
space scale a scaling time δ-function should be used defined as in (2.17) and the l magnitude
should be considered as a continuous coordinate. This implies that in (6.7) the following
replacements take place: δ(τ )→ δa(τ ), δll′ → aδ(l− l′). As a result the correlator of random
sources in local Langevin equations has the form

〈fm′l′(t)f †
ml(t + τ)〉 = 2Q(m)δmm′aδ(l − l′)δa(τ ). (6.8)

In comparison with the ordinary description in (6.8), a space delta-function arises due to the
local correlation of oscillators in space.
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7. Diffraction in a linear medium

The differential operator in (3.3) becomes non-Hermitian due to diffraction effects, so the
corresponding equation for quasi-probability becomes very complicated. However, it is
possible to use the Langevin formulation. In this way for the case of a linear medium
considered above the change of variables in non-local Langevin equations (6.5) leads to
Langevin equations, which in the three-dimensional case have the form(

∂

∂t
+ c

∂

∂z
− i

c2

2ωm

(
∂2

∂x
+
∂2

∂y

))
αm = −A(m) αm + fm(r, t)(

∂

∂t
+ c

∂

∂z
+ i

c2

2ωm

(
∂2

∂x
+
∂2

∂y

))
α∗m = −A∗(m) α∗m + f †

m(r, t)

(7.1)

where the random force correlator is defined as

〈fm′(r′, t)f †
m(r, t + τ)〉 = 2Q(m)δmm′a

3δ(r − r′)δa(τ ). (7.2)

Here Q(m) is the diffusion coefficient, which may be obtained from the corresponding
equation (7.1), but non-local Fokker–Planck equation (6.1): Q(m) ≈ Q(k).

Equations (7.1) are linear in the field amplitudes, so they are easily integrated. Let us
denote the transverse radius vector s = (x, y) and introduce a travelling coordinate system
t ′ = t − z/c, dz′ = z. Then for the given conditions at the boundary one finds

αm(z, s, t) = exp

(
−A
c
z

)∫
d2s1 αm(0, s1, t − z/c) U(0s1|zs) + W(z, s, t − z/c) (7.3)

W = 1

c

∫ z

0
dz1 exp

(
−A
c
(z− z1)

)∫
d2s1 fm(z1, s1, t − z/c)U(z1s1|zs) (7.4)

where the Green function is defined as

U(z1s1|zs) = −i
m

2π(z− z1)
exp

(
im
(s− s1)

2

z− z1

)
. (7.5)

Here αm(0, s1, t − z/c) is the transverse field distribution in the input, A = A(m).
Consider the properties of a random source W , defining its correlation function

〈W(z, 0, t)W †(z, s, t + τ)〉 = 2

c2
Qa3δa(τ )

∫ z

0
exp

(
−A + A∗

c
(z− z1)

)
D(z− z1) dz1 (7.6)

where the value

D =
[

m

2π(z− z1)

]2

exp

(
−i

ms2

2(z− z1)

)∫
d2s1 exp

(
i

m

z− z1
s1s

)
(7.7)

describes the diffraction effects. Since the diffusion coefficientQ is determined by the number
of atoms at the upper level N2, the transverse sizes of the medium where the light propagates
should be taken into account. In this way the limits of integration over s1 in D are defined.
Thus D = δ(s) if the medium is not limited in the transverse direction. This means that the
noise source is δ-correlated and the noise is white. Taking into consideration the finiteness
of the size in the transverse direction changes the situation. Thus in a medium confined by a
cylinder with a radius R

D = mR

2π(z− z1)s
J1

(
msR

z− z1

)
exp

(
−i

ms2

2(z− z1)

)
(7.8)

where J1 is the Bessel function.
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